\(\int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx\) [1020]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 44 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx=\frac {\tan (e+f x)}{f \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

[Out]

tan(f*x+e)/f/(a+I*a*tan(f*x+e))^(1/2)/(c-I*c*tan(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {3604, 39} \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx=\frac {\tan (e+f x)}{f \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

[In]

Int[1/(Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]]),x]

[Out]

Tan[e + f*x]/(f*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])

Rule 39

Int[1/(((a_) + (b_.)*(x_))^(3/2)*((c_) + (d_.)*(x_))^(3/2)), x_Symbol] :> Simp[x/(a*c*Sqrt[a + b*x]*Sqrt[c + d
*x]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0]

Rule 3604

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(a c) \text {Subst}\left (\int \frac {1}{(a+i a x)^{3/2} (c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {\tan (e+f x)}{f \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.82 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx=\frac {\tan (e+f x)}{f \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

[In]

Integrate[1/(Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]]),x]

[Out]

Tan[e + f*x]/(f*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])

Maple [A] (verified)

Time = 0.80 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.68

method result size
risch \(-\frac {i \left ({\mathrm e}^{2 i \left (f x +e \right )}-1\right )}{2 \sqrt {\frac {a \,{\mathrm e}^{2 i \left (f x +e \right )}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) \sqrt {\frac {c}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, f}\) \(74\)
derivativedivides \(\frac {\sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \left (1+\tan ^{2}\left (f x +e \right )\right ) \tan \left (f x +e \right )}{f a c \left (\tan \left (f x +e \right )+i\right )^{2} \left (-\tan \left (f x +e \right )+i\right )^{2}}\) \(82\)
default \(\frac {\sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \left (1+\tan ^{2}\left (f x +e \right )\right ) \tan \left (f x +e \right )}{f a c \left (\tan \left (f x +e \right )+i\right )^{2} \left (-\tan \left (f x +e \right )+i\right )^{2}}\) \(82\)

[In]

int(1/(c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*I/(a*exp(2*I*(f*x+e))/(exp(2*I*(f*x+e))+1))^(1/2)/(exp(2*I*(f*x+e))+1)/(c/(exp(2*I*(f*x+e))+1))^(1/2)*(ex
p(2*I*(f*x+e))-1)/f

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.52 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx=\frac {\sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (-i \, e^{\left (4 i \, f x + 4 i \, e\right )} + i\right )} e^{\left (-i \, f x - i \, e\right )}}{2 \, a c f} \]

[In]

integrate(1/(c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*(-I*e^(4*I*f*x + 4*I*e) + I)*e^(-I*f*x
 - I*e)/(a*c*f)

Sympy [F]

\[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx=\int \frac {1}{\sqrt {i a \left (\tan {\left (e + f x \right )} - i\right )} \sqrt {- i c \left (\tan {\left (e + f x \right )} + i\right )}}\, dx \]

[In]

integrate(1/(c-I*c*tan(f*x+e))**(1/2)/(a+I*a*tan(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(I*a*(tan(e + f*x) - I))*sqrt(-I*c*(tan(e + f*x) + I))), x)

Maxima [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.36 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx=\frac {\sin \left (f x + e\right )}{\sqrt {a} \sqrt {c} f} \]

[In]

integrate(1/(c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

sin(f*x + e)/(sqrt(a)*sqrt(c)*f)

Giac [F]

\[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx=\int { \frac {1}{\sqrt {i \, a \tan \left (f x + e\right ) + a} \sqrt {-i \, c \tan \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate(1/(c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(I*a*tan(f*x + e) + a)*sqrt(-I*c*tan(f*x + e) + c)), x)

Mupad [B] (verification not implemented)

Time = 6.88 (sec) , antiderivative size = 112, normalized size of antiderivative = 2.55 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \, dx=\frac {\left (\cos \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}+\sin \left (2\,e+2\,f\,x\right )-\mathrm {i}\right )\,\sqrt {\frac {a\,\left (\cos \left (2\,e+2\,f\,x\right )+1+\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}}{2\,a\,f\,\sqrt {\frac {c\,\left (\cos \left (2\,e+2\,f\,x\right )+1-\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}} \]

[In]

int(1/((a + a*tan(e + f*x)*1i)^(1/2)*(c - c*tan(e + f*x)*1i)^(1/2)),x)

[Out]

((cos(2*e + 2*f*x)*1i + sin(2*e + 2*f*x) - 1i)*((a*(cos(2*e + 2*f*x) + sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*
f*x) + 1))^(1/2))/(2*a*f*((c*(cos(2*e + 2*f*x) - sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*f*x) + 1))^(1/2))